Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 242: 238-245, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31048229

RESUMO

Catalytic fast pyrolysis of Pongamia residual cake (PRC) and the kinetics of this were evaluated using thermogravimetry and pyrolysis-gas chromatography/mass spectrometry analyses. The influence of the heating rate on the devolatilization process was studied to obtain corresponding kinetic information. Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) model-free isoconversion methods were used to predict the kinetic parameters. The major thermal degradation of PRC occurred around 150-550 °C with an activation energy of 97.2-394.3 kJ/mol or 114.5-412.2 kJ/mol as determined by the KAS and FWO methods, respectively. Micro-scale pyrolysis trials were performed to determine the effects of the PRC particle size, reaction temperature and PRC: catalyst weight ratio on the pyrolytic product distribution and upgraded pyrolytic vapor properties for the 5 wt% Ni impregnated on activated carbon (AC), aluminium(III) oxide (Al2O3), kaolin and zeolite NaA supports. The results indicated that using a 1:5 PRC: Ni/AC catalyst weight ratio with medium-sized PRC particles (125-425 µm) was the most effective condition for the conversion of oxygenated (O)-compounds to hydrocarbons (HCs) through decarbonylation, decarboxylation and dehydration reactions, giving the highest decrease (99%) in O-compounds. Increased HC yields, to more than 58%, were also obtained with this catalyst. Similarly, using the other synthesized Ni catalysts resulted in a reduction in the O-compounds and production of favorable HC species, albeit to a lesser extent. Therefore, the catalytic pyrolysis process of this residue, especially with a Ni/AC catalyst, has the potential to be a viable option for producing upgraded pyrolysis oil, which may be applied as a quality alternative biofuel.


Assuntos
Pongamia , Catálise , Cinética , Pirólise , Termogravimetria
2.
Carbohydr Polym ; 87(1): 84-94, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34663044

RESUMO

The esterification of cellulose from waste cotton fabric in a N,N-dimethylacetamide/lithium chloride solvent system was carried out using different types of fatty acid chloride including butyryl chloride, capryloyl chloride, and lauroyl chloride as esterifying agents, and N,N-dimethyl 1-4-aminopyridine as a catalyst under conventional and microwave activation. Microwave esterification was performed under 2.45GHz with power varying from 90 to 450W. The optimum conditions for esterification of cotton cellulose with various esterifying agents were investigated in terms of reaction time and temperature to attain appropriate %weight increase and degree of substitution of esterified-cellulose. The degree of substitution, functional group and chemical structure, and thermal stability of cellulose ester powder were characterized by 1H NMR, FTIR, and TGA/SDTA analysis. Morphologies, crystallinity, and solubility of modified cellulose by two different heating methods were compared.

3.
Environ Technol ; 33(22-24): 2489-95, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23437645

RESUMO

Pyrolysis and gasification processes were utilized to study the feasibility of producing fuels from landfilled plastic wastes. These wastes were converted in a gasifier at 700-900 degrees C. The equivalence ratio (ER) was varied from 0.4-0.6 with or without addition ofa Ni-Mg-La/Al2O3 catalyst. The pyrolysis and gasification of plastic wastes without catalyst resulted in relatively low H2, CO and other fuel gas products with methane as the major gaseous species. The highest lower heating value (LHV) was obtained at 800 degrees C and for an ER of 0.4, while the maximum cold gas efficiency occurred at 700 degrees C and for an ER of 0.4. The presence of the Ni-Mg-La/Al2O3 catalyst significantly enhanced H2 and CO production as well as increasing the gas energy content to 15.76-19.26 MJ/m3, which is suitable for further usage as quality fuel gas. A higher temperature resulted in more H2 and CO and other product gas yields, while char and liquid (tars) decreased. The maximum gas yield, gas calorific value and cold gas efficiency were achieved when the Ni-Mg-La/Al2O3 catalyst was used at 900 degrees C. In general, addition of prepared catalyst resulted in greater H2, CO and other light hydrocarbon yields from superior conversion of wastes to these gases. Thus, thermochemical treatment of these problematic wastes using pyrolysis and gasification processes is a very attractive alternative for sustainable waste management.


Assuntos
Gases/química , Metais/química , Plásticos/química , Eliminação de Resíduos , Catálise , Termogravimetria
4.
Environ Technol ; 33(22-24): 2497-505, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23437646

RESUMO

Gasification processing of biomass as a renewable energy source generates tar in the product gas. Tar leads to foul-up of the process equipment by corrosion and deposit formation. Catalytic elimination of tars is a crucial step to improve fuel gas quality from the process. In this study, a palladium catalyst on alumina (Pd/Al2O3) was used in steam reforming of benzene as a biomass gasification tar model compound. The reaction was carried out in a laboratory-scale tube reactor made of stainless steel to study the effect of reaction temperature, catalyst loading, quantity of palladium catalyst tubes, steam to carbon ratio (S/C), and residence time on catalytic performance and stability. Pd/Al2O3 showed high efficiency ofbenzene decomposition and enhanced the formation of fuel gas. Hydrogen and carbon conversions increased with reaction temperature. Although the benzene concentration increased from 2000 to 5000 mg/l, the catalytic performance at 600 degrees C and 800 degrees C was similar. 1.0 wt% Pd/Al2O3 showed excellent catalytic activity with the highest hydrogen and carbon conversions of 83% and 81%, respectively at 800 degrees C. This result is attributed to the smooth surface of the palladium, as noted from scanning electron microscopy imaging. An S/C of 2 provided the highest conversion. The addition of catalyst from four and seven tubes did not result in any great difference in terms of benzene cracking efficiency. The fourth cyclic usage of 1.0 wt% Pd/Al2O3 exhibited a higher conversion than that of 0.5 wt%.


Assuntos
Alumínio/química , Hidrocarbonetos/química , Modelos Teóricos , Paládio/química , Vapor , Biomassa , Catálise , Microscopia Eletrônica de Varredura , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...